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THE LOCAL NATURE OF HYPOTHESIS TESTS INVOLVING 
INEQUALITY CONSTRAINTS IN NONLINEAR MODELS' 

BY FRANK A. WOLAK 

This paper derives several properties unique to nonlinear model hypothesis testing 
problems involving linear or nonlinear inequality constraints in the null or alternative 
hypothesis. The paper is organized around a lemma which characterizes the set contain- 
ing the least favorable parameter value for a nonlinear model inequality constraints 
hypothesis test. We then present two examples which illustrate several implications of this 
lemma. We also discuss the impact of these properties on the empirical implementation 
and interpretation of these test procedures. 

KEYWORDS: Hypothesis testing, multivariate nonlinear one-sided tests, nonlinear in- 
equality constraints tests. 

1. INTRODUCTION 

ECONOMETRICIANS HAVE RECENTLY BECOME INTERESTED in hypothesis testing 
problems involving inequality constraints in nonlinear models. Gourieroux, 
Holly, and Monfort (1980), hereafter GHM, consider a nonlinear generalization 
of the multivariate one-sided test: H: h(6) = 0 versus K: h(6) > 0, where h(6) is 
a nonlinear vector-valued function of 0 E Rk.2 Kodde and Palm (1986), hence- 
forth K&P, derive a distance test approach to hypothesis tests of the form H: 
h1(6) = 0, h2(0) = 0 versus K: hl() = O, h2(0) >0 and H: hl(o) = O, h2(0) > O 
versus K: 6 e Rk, where h1(6) and h2(0) are subvectors of h(6). We refer to all 
nonlinear model hypothesis tests involving nonlinear or linear inequality con- 
straints by the name nonlinear one-sided (NOS) hypothesis tests. 

The purpose of this paper is to derive several properties unique to NOS 
hypothesis tests which clarify the empirical utility of these procedures. These 
properties arise because of the functional dependence of V(00), the asymptotic 
covariance matrix of n1/2(j - 60), on 00, the true value of 0, where 6 is a 
consistent, asymptotically normal estimate of 00. The addition of nonlinear 
inequality constraints compounds this problem by adding another source of 
dependence on 00 of the asymptotic covariance matrix relevant to the hypothe- 
sis testing problem. By the same logic used to derive the asymptotic distribution 
for nonlinear equality constraints tests, we show that NOS tests asymptotically 
reduce to linear inequality constraints tests on a linearized version of the model 
local to the assumed true parameter value 00. This large-sample reduction of a 

lI would like to thank the referees for helpful comments on earlier drafts that lead to significant 
improvements in the paper's content and clarity. Lars Peter Hansen provided very insightful 
comments and useful editorial suggestions. Franz C. Palm made several useful suggestions on a 
previous version. Bart Hamilton expertly prepared the figures. The final version of this paper was 
prepared while I was a National Fellow of the Hoover Institution. Its financial support is gratefully 
acknowledged. Partial financial support was provided by National Science Foundation Grant 
SES-90-5751 1. 

2These authors derive results for the test H: O = 0* versus K: O > 0#, where O and 0* are 
subvectors of 0 and 0* (a known vector), but in an appendix outline how an extension to nonlinear 
constraints is possible. 
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nonlinear problem to a linearized version at an assumed true parameter value 
(what we term the local nature of hypothesis tests involving inequality constraints 
in nonlinear models) interacts with the functional dependence of V(00) on 00 to 
produce all of the properties studied here. 

The three main properties treated in the paper are summarized below. The 
one which limits the empirical utility of these testing techniques most is the lack 
of an empirically implementable procedure for computing an asymptotically 
exact size critical value. For general NOS hypothesis tests, we show that the 
least favorable null asymptotic distribution can only be limited to a set of 
possible distributions, not to a unique distribution, as is the case for linear 
inequality constraints tests in linear models. A second property, which also 
impacts on the empirical content of these techniques, is the absence of tight 
upper and lower bounds on the asymptotic distribution of the test statistics 
similar to those available for linear model, linear inequality constraints ana- 
logues of these procedures. The third property is the surprising result that even 
in the case of simple linear inequality constraints on the parameters of a 
nonlinear model, the least favorable null asymptotic distribution may not occur 
at the unique parameter value satisfying all of the inequality constraints with 
equality. 

We also discuss several implications of these properties. The first concerns 
the relative merits of alternative techniques for empirically approximating the 
true asymptotic critical value. The second implication of these properties is that 
the bounds on the null asymptotic distribution become more and more slack as 
the dimension of the vector of nonlinear inequality constraints involved in the 
hypothesis test gets larger. We also discuss previous work on NOS hypothesis 
tests in light of these properties. 

Another purpose of this paper is to highlight the difference between nonlin- 
ear model testing problems involving inequality constraints and those only 
involving equality constraints. To perform an asymptotically exact test of either 
of these composite null hypotheses, we must find the parameter value in the set 
defining the null hypothesis yielding the largest critical value for a fixed size 
asymptotic test. The major difference between these two testing frameworks is 
that different true parameter values in the set defining the null hypothesis result 
in different distributions for the NOS test statistics. The geometry of the 
constraints set local to the assumed true parameter value determines the null 
asymptotic distribution for NOS tests. In contrast, for nonlinear equality con- 
straints tests, the same asymptotic distribution obtains for all parameter values 
satisfying the null hypothesis. 

The remainder of the paper proceeds as follows. Section 2 first derives a 
lemma which specifies a subset of the set defining the null hypothesis- which 
must contain the least favorable null parameter value for a nonlinear inequality 
constraints test. Then this section presents an example which illustrates the 
cause of the potential multiplicity of null asymptotic distributions. We then 
discuss a simple linear inequality constraints test in a nonlinear model where 
the least favorable parameter value does not satisfy all of the inequalities with 
equality. Section 3 explains why the bounds on the asymptotic distribution, 
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which are tight for linear models and simple linear inequality constraints, are 
slack for NOS tests. Section 4 makes specific recommendations for applying and 
interpreting these test procedures. 

2. DERIVATION OF SET CONTAINING LEAST FAVORABLE PARAMETER VALUE 

To establish the necessary background for our subsequent results, we first 
review the relevant features of the simple linear inequality constraints tests. 
This test takes the form: H: ,t > 0 versus K: ,t E RP based on ,L N(,u, Q), 
where Q is a known positive definite matrix. Perlman (1969) presents a general 
framework for analyzing these types of testing problems. Following his logic, the 
likelihood ratio (LR) statistic is defined as a minimum chi-squared-like distance 
between A and the set in which ,t lies under the null hypothesis. In this case we 
have 

(2.1) LR = inf [(QAi -M)'_( 
A 

- m) subject to m > 0]. 
m 

This null hypothesis does not specify a unique ,u. To derive an exact size a 
critical value for a linear inequality constraints hypothesis test, a least favorable 
true value of ,t in the set defining the null hypothesis must be chosen. Lemma 
8.2 of Perlman (1969) implies that for any c > 0, 

(2.2) sup pr[LR>clp,,Q]=pr[LR>c10,Q], 

where pr[LR > c lIt, D] is the probability of the event [LR > c] given that A in 
(2.1) is N(,u, Q). Therefore, the least favorable value of ,t > 0 which determines 
the exact size null distribution is ,t = 0. As stated in Perlman (1969), crucial to 
the validity of Lemma 8.2 is the lack of functional dependence of Q2 on ,u, so 
that variation in ,u cannot affect the elements of Q2. Unfortunately, with non- 
linear models or constraints, the functional dependence of the asymptotic 
covariance matrix of the constraints function estimator on the true vector of 
parameters is intrinsic to the problem. 

We now state a lemma which is the closest we can get to Perlman's Lemma 
8.2 for the general nonlinear inequality constraints testing framework. For 
expositional ease, we derive this lemma for the maximum likelihood model, 
although under suitable regularity conditions the result holds for more general 
classes of nonlinear models. Let 6 E Rk denote the parameter vector, 0 c Rk 
a compact parameter space containing 0, and L(0) the log-likelihood func- 
tion based on n observations. Under the standard regularity conditions,3 
n1/2(j - 00) -> N(O, I(0) -1) for all 00 E interior(&), where 0 is the maximum 
likelihood (ML) estimate of 00 and 

I(0) = lim E00 - - ddI 
n --> o n d 

3Here and for the remainder of the paper, the standard regularity conditions refer to those in 
Amemiya (1985, Chapter 4). 
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is Fisher's information matrix. This matrix can be consistently estimated by 

1 a2L(O) 

V(@) = - - 
n doad' 

Assuming that 00 is the true 0, we can show V(0) converges in probability to 
MO,0) so that V(0)- is a consistent estimate of the asymptotic covariance 
matrix of n1/2(6 - 60). 

Consider the nonlinear inequality constraints (NIC) test 

(2.3) H: h(6) >0 versus K: 6ERk 

for this maximum likelihood model framework.4 In this case h(6) = (h1(6), 
h2(0),..., h ())' is a p-dimensional nonlinear vector-valued function from Rk 

to RP (p < k). Let H(6) represent the (p x k) matrix of partial derivatives 
(dhi(6)/aoj, i = 1,... , p and j = 1,..., k) of h(6) with respect to the elements of 
0. From K&P and Wolak (1989), one of the three asymptotically equivalent 
forms of the test statistic for (2.3) is: 

Wn = inf - t)'f( ) (h( ) - t) subject to t > 0 

where AO)= [H(O0 _)H(O)'] and J(0)= [H(60)I(0)-1H(60)']. We now 
state our result in the form of a three-part lemma proven in the Appendix. 

First we define the necessary notation. Let C = {6 Ih(6) > 0), Ci = {I jh(6) > 0), 
and Cb = C - Ci. Partition Cb into the sets: A = {61O E Cb and hj(6) = 0 for 
only one j E P), where P = {1, 2,... ,p) is the set of integers from 1 to p, and 
B = Cb -A. For any 00 E Cb let hb(6) denote a vector of elements of h(6) such 
that hj(00) = 0 ( j EP), and m < p denote the dimension of hb(6). Let HJ(60) 
represent the matrix of first partial derivatives of hb(6) with respect to 0. 

LEMMA 1: For testing problem (2.3) we have the following three results. 
(1) For all 60 E Ci, 

(2.4) lim pr [JWn = 0100 = 1. 
n - oo 

(2) For any c > 0 and 00 E Cb such that Hb(60) is of full row rank: 
m 

(2.5) lim pr[Wn>cI60] = E Pr[X2>c]w(m,m-j,Jb(0o)) 
n ---> oo j=0 

where Jb(60) = [Hb(0O)I(0O) -Hb(60)'] and the w(m, m - j, Jb(60)) are the weights 
functions defined in Kudo (1963). 

(3) For all 60 E B, 6* eA and fixed c > 0, 

(2.6) lim pr[JWnJ>clOO] > lim pr[ WnJ>cI6*]. 
n ->oo n ->oo 

4All NOS hypothesis tests considered in this paper are under the maintained hypothesis that 0 
lies in 6. 



LOCAL NATURE OF HYPOTHESIS TESTS 985 

This lemma contains several results. Part (1) states that all elements in C', the 
interior of the constraint set, can be removed from consideration as a least 
favorable value, because WJ' converges in probability to zero for these values of 
00. Part (2) provides a general characterization of the asymptotic distribution of 
WJJ for all values of 00 E Cb. In particular, it shows the impact, on the 
asymptotic distribution of WJ, of any one of the inequality restrictions not 
holding as an equality at 00. Finally, part (3) eliminates certain elements of Cb 

from consideration as potential least favorable values of 00. Taken together, 
these three results require the least favorable value of 00 to be an element of 
the set B. Although this lemma specifies that B c C must contain the least 
favorable value of 00 under the null hypothesis, in general, it does not yield the 
solution in 00 to 

(2.7) sup lim pr[JWnJ>-cI60], 

for a given c > 0, which is the optimization problem that must be solved to 
compute the least favorable 00 E C for the critical value c. 

We now describe an algorithm for solving (2.7) for an arbitrary nonlinear 
model inequality constraints test. Unfortunately, because of the computational 
difficulties to be described, this procedure is, in most cases, useful only to 
demonstrate that the least favorable value exists, not to actually find it. Let 
c > 0 denote an arbitrary critical value. For a fixed value of 00 E B, the first step 
in the process is determining which elements of h(6) comprise the vector hb(O) 

described in part (2) of Lemma 1. Once the vector-valued function hb(O) is 
specified for 00, the large-sample probability limn-opr[Wn > ci O1] can be 
computed from equation (2.5). This process must be repeated for all 00 e B. 
The value of 00 E B which maximizes this large sample probability is the least 
favorable value of 00 determining the asymptotically exact size of the test for 
the critical value c. Because of the functional dependence of this least favorable 
value of 00 on c, we write it as 00(c). The critical value for an asymptotically 
exact size a NIC test is the c that solves limn 0 pr[Wn > cO (c)] -= a. 

Actually implementing this algorithm deserves some comment. Although the 
w(p, j, X) (j = 0, .. ., p) are only available in closed form for p < 4, Kudo (1963) 
gives expressions for these weights for arbitrary p as sums of products of 
multivariate normal probabilities determined from submatrices of X. Conse- 
quently, for each value of Jb(6O), the distribution given in (2.5) can be com- 
puted. However, the problem of determining Jb(O0) for each 00 still remains. As 
defined in part (2) of Lemma 1, Jb(SO) is a function of the information matrix, 
which does not have an analytical form for many nonlinear models. Conse- 
quently, for these models the nonexistence of an analytical expression for the 
matrix I(0) precludes computing the asymptotically exact critical value. 

Nevertheless, there are two situations where the unique least favorable value 
of 00 exists for the NIC test. If the matrix I(00) is diagonal for all 00 E B and 
the inequality constraints take the form of simple bounds, the least favorable 
value is the unique 00 which satisfies all of the inequalities with equality. For 
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the case of a 1-dimensional nonlinear inequality constraint test, all of the values 
of 00 which satisfy the inequality constraint with equality yield the same 
asymptotic distribution. This result is a large-sample nonlinear analogue of a 
one-sided t test. 

We now present a two-dimensional example, which conveys the intuition 
underlying this multiplicity of null asymptotic distributions for NIC hypothesis 
tests. Consider the testing problem 

(2.8) H: h(0) > 0 versus K: 0 E R2 

based on Z = 0 +v, v -N(O, I), 

where I is a (2 x 2) identity matrix. Define the elements of h(0) E R2 as follows: 
h1(0) = 02 - 02 and h2(0) = 01 - 02 for 0 = (01, 02)'. The matrix of first-partial 
derivatives of h(0) takes the form: 

(2.9) H(0) [21 -1] 

for all 0e R2. Given n observations on Z, the ML estimate of 00 is 0= 

(l/n)Ei>1, which is N(00,(1/n)I). Therefore n72( 0 0)- -N(0,I) and 
n1/2(h() - h(00)) is, by the delta-method, asymptotically N(O, J(00)), where 
J(00) = H(0O)H(0O)'. The test statistic for (2.8) is 

(2.10) Wn = inf [n(h() - t)'J(0) 1(h() - t) subject to t > O 

where JG0) = H(O)H(O)'. By an application of Lemma 1 and because h(0) E R 
the least favorable value of 00 under the null hypothesis must be a member of 
the set T- {0Ih(0) = 0}. For this simple problem there are two 00 E T: 0 0? = 

(0,0)' and 0So = (1, 1)'. The two sets of inequalities H(0?0)0 > (0,0)' and 
H(0O1)0 > (-1, 0)' are linearized versions of the inequality constraints h(0) > 0 
at these two points. Each set of linear inequality constraints defines a cone of 
tangents to C = { Ih(0) > 0, 0 E R2} at the value of 0 satisfying all of the linear 
inequalities with equality. Because 0 converges in probability to 00, we know 
that 1(0) converges in probability to J(00) for all 00 in the parameter space, so 
that we have: 

J(0g )=[1 2] and J(0 ?)[-3 2] 

Because the asymptotic distribution of (2.10) depends on 00 through J(00), each 
value of 00 implies a different null asymptotic distribution. From Wolak (1989), 
the asymptotic distribution of Wn, given 00 E T, is 

2 

(2.11) lim pr [ Wn > c] = pr (XJ2> c)w(2,2 -I jJ(00)). 
n --- oc j= O 

This asymptotic distribution is functionally dependent on 00 via J(00) through 
the weights, w(2,2 -j, J(00)). The weights for J(00?) and J(011) can be calcu- 
lated from the closed form expressions given in Wolak (1987). These weights 
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it2 L 

00 

it2 -a i1 =0 

S M = {n | z > O , Tc2E 9, TC E i9} 

FIGURE 1.-Graphical representation of canonical linear inequality constraint sets for hypothesis 
test (2.8). 

yield two potential null asymptotic distributions which result in two different 
critical values for the test. 

Reducing each local linear inequality constraints test in terms of 0 to its 
canonical form most clearly illustrates the effect of varying 00 on the resulting 
null asymptotic distribution. As discussed in GHM (1982) and Wolak (1988), for 
any linear inequality constraint framework Rf3 > r with R of full row rank and 
test statistic based on /3 = /3 + e, E N(O, X), there exists an invertible affine 
transformation to the framework Ar > 0 (A is lower triangular with l's along 
the diagonal) and test statistic based on * = v + j7, 7- N(O, I). We call this 
inequality constraint framework in terms of v the canonical linear inequality 
constraints set. This form has the attractive feature of defining all test statistics 
in terms of Euclidian distances, because the covariance matrix of r is the 
identity matrix. It also defines all inequality constraints so that they describe 
polyhedral cones. For our two-dimensional problem, once we specify the (2, 1) 
element of A (a in the notation of Wolak (1988)), the entire canonical linear 
inequality constraints framework is specified. Applying the invertible affine 
transformation given in Wolak (1988) to the test at 000 implies aoo = 1.0, and 
applying it to Ol' yields all = 0.6. The constraints sets in (1, 72)-space corre- 
sponding to these two values of 00 are given in Figure 1. The constraint set 
corresponding to Oll contains that corresponding to 000, so that 000 is the least 
favorable null value of 00. 

The dependence of the null asymptotic distribution of NIC tests on the local 
geometry of the constraint set relative to 00 is not unique to this form of h(0). 
For the case of 0 E Rk and h(o) a nonlinear vector-valued function from Rk to 
RP, where p < k, there may be an uncountable number of 0 e Rk such that 
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h(0) = 0, and an uncountable number of potential null asymptotic distributions. 
By Lemma 1, for inequality constraints tests with p > 2 the set of possible least 
favorable values expands beyond T to B. Nevertheless, the intuition provided 
by this example continues to hold; that is, the 60 e B with the local linear 
inequality constraints test having the largest size a canonical linear inequality 
constraints critical value is the least favorable value of 00 under the nonlinear 
model inequality constraints null hypothesis. 

To explore the implications of Lemma 1 further, we present a simple 
inequality constraints test where the set of least favorable parameter values 
expands beyond T to B, and the least favorable parameter value does not 
satisfy all of the inequalities with equality. In the process, we describe the 
features of the NIC hypothesis test necessary for this result to occur. 

Consider the ML model for the case of independent identically distributed 
observations from the bivariate normal distribution 

a2o PUT 7 ) 

For this model, we have 0 = (a2, 72, p)' ande = o l001 >0, 02 >0,- 03 < 1}. 

The ML estimate of 00, 0, is given in Lehmann (1983, pp. 439-440). Under the 
standard regularity conditions, n1/2(0 - 0S) converges in distribution to a 
N(0, I(o) -1) random vector, where I(00) -1 takes the form given in Lehmann 
(1983, p. 441). The correlation matrix of I(0)-1 is equal to: 

1 p2 pIV/2; 
(2.12) C(I(0) ) p2 1 p14 

-pIV2 pIV2 1 

This correlation matrix is the minimum information necessary to compute the 
null asymptotic distribution for any NIC hypothesis test involving 0 because the 
w(p, , j) depend on X only through its correlation matrix. 

Within the context of this three-parameter model consider the hypothesis test 

(2.13) H: 0 S 0v versus K: 0 Ee cR3, 

where 0v = (1.0, 1.0,0.95). One of the three asymptotically equivalent forms of 
the test statistic for this hypothesis test is: 

AA A 

Wn = inf [n(-t)'I(O)(0-t) subject to t S v]. 

For 00 = 0v and any c > 0, the exact limiting distribution of Wn is given by the 
following weighted sum of x2-distributions: 

(2.14) lim pr [ Wn > c] =0.015263 pr [X2 > c] 
n -- 

+ 0.168204pr[ _>c] + 0.484737pr[[X>c]2 

The weights in (2.14) were calculated using the correlation matrix given in (2.12) 
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evaluated at 0 = 0v and the formulae given in the Appendix of Wolak (1987). In 
the Appendix we show that the asymptotic distribution of WJ' for 00 _ OB 

(1.0, 1.0, 0.0)' is 

(2.15) lim pr[W k>c]= 4pr [x>c+ pr[XiYcI 
n -- 

We can also show that 00 = OB yields the least favorable null asymptotic 
distribution for this hypothesis test. Figure 2 contains plots of J(c 0 0) -- 

lim noopr[WnJ>cl0] for 0v and OB. The plot labeled 0v in the figure corre- 
sponds to F(cl0v) and the plot labeled OB corresponds to F(c OB). For all 
values of c in the diagram, F(c OB) > F(c Ov), despite the fact that 0v is the 
value of 0 which satisfies all of the inequality constraints with equality. In this 
case, because of the form of the functional dependence of the asymptotic 
covariance matrix of n'/2(0 - 0S) on 00, the least favorable value of 00 E C only 
satisfies two of the three inequalities with equality. 

This result is particularly relevant to the NIC framework derived by K&P. 
These authors treat the case in which J(0) does not depend on 0, and 
consequently the least favorable value of 00 lies in T. However, as Lemma 1 
and this example show, the least favorable value of 00 need not lie in T when 
J(0) depends on 0 as is often the case in nonlinear models. 

We now discuss an alternative procedure for computing critical values for 
these tests which can run into difficulties for the reasons given in the above 
example. This procedure involves computing the weights, w(p, j, J(A0)), using a 
consistent estimate of J(A0) evaluated at 0, the unrestricted estimate of 00. For 
the ML model and hypothesis test of Lemma 1, the weights are computed using 
f(s) as described earlier, instead of J(A0). By this logic, the critical value Ca(0) 
solves the following equation in c: 

p 

(2.16) a = E pr[xJ >c]w(p,p-jif()) 
j=0 

A 

where 0 is the MLE of 0. We can show that so long as the least favorable value 
of 00 is in T, this procedure will yield an asymptotically exact size a critical 
value. However, if the least favorable value of 00 does not satisfy all the 
inequalities with equality, as in hypothesis test (2.13), this critical value will not 
lead to an asymptotically exact size test. In these instances, because of the 
asymptotic dimension reduction in the nonlinear inequality constraints test for 
each hj(oo) >0, the quantity Ca (0) defined in (2.16) does not converge in 
probability to the asymptotically exact size critical value cb(0O*), where 0* is the 
least favorable value of 00 E B. When 00 = 0* (the true parameter value equals 
the least favorable parameter value), the critical value Cb(0O*) is asymptotically 
equivalent to the solution in c to 

m 

1=O 

where Ab(o) = Hb(0)V(0 )_Hb(0)'. Even under the usual assumption for comput- 
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FIGURE 2.-Probability of rejecting null hypothesis for test (2.13) as a function of critical value. 
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ing critical values5 that 00 = 0*, if the least favorable value does not satisfy all of 
the inequalities with equality, solving equation (2.16) will not yield an asymptoti- 
cally exact critical value. This procedure does not take into account the 
dimension reduction in the constraints set (i.e., m <p) caused by some of the 
inequalities not holding with equality at 0*. In these cases, solving (2.16) instead 
of (2.17) can yield too small or large of an asymptotic critical value, so that 
limnO. pr[Wn > Ca(0)I0o] # a. 

Kodde and Palm (1986) suggest solving (2.16) to compute critical values for 
NOS tests. Their procedure yields an asymptotically exact test for all NOS tests 
where 0* c T. However, as the above discussion demonstrates, for higher 
dimension (p > 2) NIC tests with 0* E B, solving (2.16) for ca(0) to compute 
critical values can lead to incorrect asymptotic size tests. 

3. SLACKNESS OF BOUNDS ON NULL DISTRIBUTION 

This section discusses the slackness of the bounds on the exact null asymp- 
totic distribution of the NOS test statistics. Using the canonical linear inequality 
constraints form of an NOS test, we can derive bounds on the null asymptotic 
distribution of these test procedures. Consider a multivariate inequality con- 
straints test (2.3) for 0 E Rk and h(O) E RP (p S k). As described earlier, we 
can reduce any large-sample local linear inequality conlstraint test at 00 to its 
canonical form in terms of v and Ar > 0 as shown in Figure 1. Each 00 E B 
implies a polyhedral cone defining the large-sample canonical linear inequality 
constraints null hypothesis in 7r-space. For any polyhedral cone defined by 
A7r > 0 there is a half-space in RP containing it and a half-line in RP contained 
in it. In terms of our notation, for any CA {xlAx > 0, x E Rk}, there exists a 
half-space, M D CA and half-line, L c CA. (See Figure 1 for the case of p = 2.) 
Define 

WM= inf (*7- 7)'(- ) and WL= inf (7- )'(i -4). 
4EM 4EL 

Clearly, WM < W < WL, where W is the large-sample value of Wn. Consequently, 
we have: 

(3.1) inf pr[D>cI00,J(0O)]>pr[WM>cI7=0]= pr[xiYc]; 
O0e 

(3.2) sup pr [D > c00, J(00)] < pr [WL > CI1 = 0] 
Oe S 

2pr[Xp 1c] + 2pr[Xp c], 

where S = B for the NIC test, S =T for the test H: h(0) = 0 versus K: 
h(0) > 0, and D is the large-sample value of the respective NOS test statistic. 

An alternative way to get the right-hand side of (3.1) is to take the infimum 
with respect to all positive definite Q? of the rejection probability given in (2.2) 

5Lehmann (1986, pp. 68-69) discusses this approach to computing critical values for hypothesis 
tests having a general composite null hypothesis. 
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holding ,u = 0. The supremum of (2.2) over this same set of Q holding ,u = 0 
yields to the right side of (3.2). For this linear model linear inequality constraint 
framework, because Q, the covariance matrix of ,u, is allowed to vary indepen- 
dently of ,u, the infimum and supremum of the probability in (2.2) can be taken 
with respect to all positive definite matrices while maintaining p. = 0. Conse- 
quently, for this case, Perlman (1969) shows that the right-hand side of (3.1) and 
(3.2) 'are tight bounds on the null distribution. However, for the case of 
nonlinear models and/or constraints, the asymptotic covariance matrix of the 
constraints vector J(00) can only be altered by changing 00. Consequently, by 
varying 00 over S, the entire set of positive definite matrices cannot be traced 
out by J(00). This implies that the distributions given in (3.1) and (3.2) are slack 
for most NOS tests. Both of the examples in Section 2 illustrate this point. 

Exactly how slack these bounds are depends on the number of inequality 
constraints under examination, as well as the specific model and constraints set. 
Because (3.1) is independent of p, the dimension of h(0), by inspection of (3.2), 
as p grows the difference between the upper and lower bounds on the 
asymptotic distribution will increase. Unfortunately, there is no simple set of 
conditions on the model or constraint set which will allow a characterization of 
the instances where the actual asymptotic distribution is closer to the upper 
bound than the lower bound or vice versa. 

The results given (3.1) and (3.2) have implications for the distributional 
bounds given in K&P. For NOS tests when J(0) depends on 0, the upper and 
lowers bounds on the null asymptotic distribution given in equations (3.1) of 
K&P are no longer tight. Nevertheless, as demonstrated above, the upper and 
lower critical values computed in Table I of their paper still yield valid slack 
upper and lower bounds on the asymptotically exact critical value for any NOS 
hypothesis tests when J(0) depends on 0. Consequently, these critical values can 
still be used to draw asymptotically valid inferences, but the increasing distance 
between the upper and lower critical values as p grows will make drawing 
definitive inferences increasingly unlikely. 

These results also impact on the nonlinear model linear multivariate one-sided 
test considered by GHM (1980): H: 01 = 0r versus K: 01 > 0o, where 0, and 0r 
are subvectors of 0 and 0 ' (a known vector). Even though this test has a point 
null hypothesis, the problem of multiple null asymptotic distributions still arises 
if the asymptotic covariance matrix of the constraints vector depends on 02, the 
elements of 0 excluded from the test. The bounds on the null asymptotic 
distribution given in (3.1) and (3.2) are also slack for this testing framework 
because, in general, the set of all positive definite matrices cannot be traced out 
by the asymptotic covariance matrix of n1/2(0I - Or*) by varying 02 over its 
parameter set. 

4. CONCLUSIONS AND IMPLICATIONS FOR NOS TESTS 

All of the problems associated with testing problems involving nonlinear 
inequality constraints arise from the dependence of the asymptotic distribution 
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on the geometry of the inequality constraints local to the assumed true 00. A 
framework which explicitly recognizes these limitations of nonlinear inequality 
constraint tests in nonlinear models should not fall prey to these complications. 
Wolak (1989) presents a general local hypothesis testing framework for the case 
that either the null or alternative hypothesis is specified by a system of 
nonlinear inequality constraints or combinations of nonlinear inequality and 
equality constraints. That paper derives asymptotically exact local results for 
these hypothesis tests. Emphasis is placed on deriving the precise geometry of 
the set specified by the inequality constraints and consistently estimating the 
exact null asymptotic distribution implied by this set. 

The results presented here are not meant to discourage the empirical imple- 
mentation of these kinds of NOS procedures, only to encourage their proper 
use and the correct interpretation of the results. Several recommendations 
along these lines are possible. The major result of this paper is the difficulty in 
obtaining an empirically implementable asymptotically exact hypothesis test. 
This conclusion implies that in most instances an asymptotic bounds test is 
necessary. The results of Section 3 enter here. They illustrate that, in general, 
only slack upper and lower bounds on the asymptotic distribution of these test 
statistics exist. For tests involving higher dimensional inequality constraints, 
these bounds become very slack, making inconclusive test results more proba- 
ble. However, economic theory or some other form of a priori information often 
yields a specific point on the boundary of C relative to which the nonlinear 
inequality constraints test can be performed. In these cases, the researcher 
should then perform the inequality constraint test local to this point. Proceeding 
as described in Wolak (1989), an asymptotically exact distribution for the test 
statistic is available so that a definitive conclusion concerning the hypothesis test 
can be reached. 

Department of Economics, Stanford University, Stanford, CA 94305, U.S.A. 
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APPENDIX 

PROOF OF LEMMA 1: First we show that for any set of nonlinear inequality constraints and any 
H0 E C, as n -- oc, the number of inequality constraints used to compute Wn is reduced by the 
number of hj(6) such that hj(Oo) > 0 for i E P. Given this result, we then derive parts (1), (2), and 
(3) of Lemma 1. 

Define ln(O) = n"2(h(6) - h(60)) for any Ho E C. Under our regularity conditions, l,,(O() con- 
verges in distribution to a N(O, J(oo)) random vector for all 6( E interior(@). For a given value of 
H0 E B, we can rewrite the optimization problem determining Wn as 

(A.l) Wn = inf [(ln(6o) - t)'J(f) (ln(60) - t) subject to t =x -n'2h(60), x > 0] 

Substituting t + n1"2h(60) for x in (A.1) yields: 

(A.2) Wn = inf [(ln(6o) - t)'l5)' (ln(60) - t) subject to t > n1/2h(O()] 
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Suppose 60 E B - T. As defined in part (2), hb(6) Ee R' is the subvector of the inequality constraints 
satisfied with equality, so that hb(6O) = 0. Let h/(C) E RP-m denote the subset of h(6) satisfied with 
strict inequality, so that hs(6o) > 0. Partitioning t conformably to h(6), we have t = (t,, t). Using 
this notation, we can rewrite (A.2) to obtain: 

(A.3) W, = inf (In(o)- t)'J(O) (i(6o) -t) subject to tb > 0, ts >- nl/2h(00)] . 

Taking the limit of (A.3) as n -Xoo we obtain: 

(A.4) W= inf [(z-t)'J(60) 1(z-t) subject to tb > ? ts E RPmJ, 

where the exact distribution of z is N(0, JA(0)). Consequently, for the elements of h(60) that are 
strictly greater than zero, in the limit, the corresponding elements of t are unconstrained in the 
optimization problem determining W, the limiting value of WJ. 

To establish part (1) of the lemma note that if 6o is such that h,(60) = h(0o), all of the inequality 
constraints are slack, then (A.4) reduces to: 

(A.5) W= inf [(z - t)'J(0o) 1(z - t) subject to t E RP] 

Because t is unrestricted, we have W= 0, so that limn --* pr[W,, = 01 = 1. Rothenberg (1973, p. 50) 
establishes a related result which shows that the asymptotic distribution of the inequality restricted 
estimator is the same as that for the unrestricted estimator when the true parameter value lies in the 
interior of the constraints set. 

To establish part (2) we apply the standard results for linear inequality constraint tests to (A.4). 
The results from Wolak (1987) imply that the asymptotic distribution of Wn for this 00 is: 

m 

(A.6) lim pr[Wn>c]=pr[W>c]= prJ2> C w(m, m -i, J(00)), 
nr -- =a 

r X 
1=0 

where Jb(6o) is defined in the statement of part (2). We require the condition that Hb(6o) is full row 
rank to guarantee that Jb(8O) is positive definite. This condition is required to compute weights 
entering the null asymptotic distribution using the functions given in Kudo (1963). By the continuity 
of H(6), values of 00 where Hb(60) is less than full row rank can be eliminated from consideration 
as the least favorable parameter value. 

To establish part (3) we note that for values of 00 E C such that h/(C0) = 0 for only a single i E P, 
by the logic of (A.1)-(A.4) we know that the distribution of Wn asymptotically reduces to the 
distribution associated with a univariate inequality constraints test. This distribution is I 

pr[X2 > c] 

for c > 0. From equation (3.1) we can see that this distribution is also the lower bound on the exact 
null asymptotic distribution of a NIC test of arbitrary dimension, which establishes part (3). 

PROOF OF EQUATION (2.15): Specializing h(6) to the case of test (2.13) we obtain h(H) = 
Z- 6. For the case that p < 0.95, the correlation matrix of Vb(6O) is the (2 x 2) submatrix of 

C(I(O)6- 1): 

(A.7) [2 1{ 

Let VB denote (A.7) evaluated at the point OB. Using the closed form solutions for the weights in 
Wolak (1987) gives w(2,2, VB) = -, w(2, 1, VB) = ', and w(2, 0, VB)= l. Applying (A.6) with these 
weights gives (2.15), because pr[x2 > c3 = 0 for c > 0. 
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