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THE LOCAL NATURE OF HYPOTHESIS TESTS INVOLVING
INEQUALITY CONSTRAINTS IN NONLINEAR MODELS'

By Frank A. WoLAK

This paper derives several properties unique to nonlinear model hypothesis testing
problems involving linear or nonlinear inequality constraints in the null or alternative
hypothesis. The paper is organized around a lemma which characterizes the set contain-
ing the least favorable parameter value for a nonlinear model inequality constraints
hypothesis test. We then present two examples which illustrate several implications of this
lemma. We also discuss the impact of these properties on the empirical implementation
and interpretation of these test procedures.

Keyworps: Hypothesis testing, multivariate nonlinear one-sided tests, nonlinear in-
equality constraints tests.

1. INTRODUCTION

ECONOMETRICIANS HAVE RECENTLY BECOME INTERESTED in hypothesis testing
problems involving inequality constraints in nonlinear models. Gourieroux,
Holly, and Monfort (1980), hereafter GHM, consider a nonlinear generalization
of the multivariate one-sided test: H: h(68) = 0 versus K: h(8) > 0, where h(0) is
a nonlinear vector-valued function of 8 € R¥.? Kodde and Palm (1986), hence-
forth K& P, derive a distance test approach to hypothesis tests of the form H:
h(8)=0,h,(8)=0 versus K: h(0)+0,h(0)>0 and H: h(0)=0,h0)>0
versus K: § € R¥, where h(#) and h,(8) are subvectors of h(0). We refer to all
nonlinear model hypothesis tests involving nonlinear or linear inequality con-
straints by the name nonlinear one-sided (NOS) hypothesis tests.

The purpose of this paper is to derive several properties unique to NOS
hypothesis tests which clarify the empirical utility of these procedures. These
properties arise because of the functional dependence of V(8,), the asymptotic
covariance matrix of n'/%(6 — 6,), on 6,, the true value of 6, where 6 is a
consistent, asymptotically normal estimate of 6,. The addition of nonlinear
inequality constraints compounds this problem by adding another source of
dependence on 6, of the asymptotic covariance matrix relevant to the hypothe-
sis testing problem. By the same logic used to derive the asymptotic distribution
for nonlinear equality constraints tests, we show that NOS tests asymptotically
reduce to linear inequality constraints tests on a linearized version of the model
local to the assumed true parameter value 6,,. This large-sample reduction of a
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nonlinear problem to a linearized version at an assumed true parameter value
(what we term the local nature of hypothesis tests involving inequality constraints
in nonlinear models) interacts with the functional dependence of V(6,) on 6, to
produce all of the properties studied here.

The three main properties treated in the paper are summarized below. The
one which limits the empirical utility of these testing techniques most is the lack
of an empirically implementable procedure for computing an asymptotically
exact size critical value. For general NOS hypothesis tests, we show that the
least favorable null asymptotic distribution can only be limited to a set of
possible distributions, not to a unique distribution, as is the case for linear
inequality constraints tests in linear models. A second property, which also
impacts on the empirical content of these techniques, is the absence of tight
upper and lower bounds on the asymptotic distribution of the test statistics
similar to those available for linear model, linear inequality constraints ana-
logues of these procedures. The third property is the surprising result that even
in the case of simple linear inequality constraints on the parameters of a
nonlinear model, the least favorable null asymptotic distribution may not occur
at the unique parameter value satisfying all of the inequality constraints with
equality.

We also discuss several implications of these properties. The first concerns
the relative merits of alternative techniques for empirically approximating the
true asymptotic critical value. The second implication of these properties is that
the bounds on the null asymptotic distribution become more and more slack as
the dimension of the vector of nonlinear inequality constraints involved in the
hypothesis test gets larger. We also discuss previous work on NOS hypothesis
tests in light of these properties.

Another purpose of this paper is to highlight the difference between nonlin-
ear model testing problems involving inequality constraints and those only
involving equality constraints. To perform an asymptotically exact test of either
of these composite null hypotheses, we must find the parameter value in the set
defining the null hypothesis yielding the largest critical value for a fixed size
asymptotic test. The major difference between these two testing frameworks is
that different true parameter values in the set defining the null hypothesis result
in different distributions for the NOS test statistics. The geometry of the
constraints set local to the assumed true parameter value determines the null
asymptotic distribution for NOS tests. In contrast, for nonlinear equality con-
straints tests, the same asymptotic distribution obtains for all parameter values
satisfying the null hypothesis.

The remainder of the paper proceeds as follows. Section 2 first derives a
lemma which specifies a subset of the set defining the null hypothesis- which
must contain the least favorable null parameter value for a nonlinear inequality
constraints test. Then this section presents an example which illustrates the
cause of the potential multiplicity of null asymptotic distributions. We then
discuss a simple linear inequality constraints test in a nonlinear model where
the least favorable parameter value does not satisfy all of the inequalities with
equality. Section 3 explains why the bounds on the asymptotic distribution,
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which are tight for linear models and simple linear inequality constraints, are
slack for NOS tests. Section 4 makes specific recommendations for applying and
interpreting these test procedures.

2. DERIVATION OF SET CONTAINING LEAST FAVORABLE PARAMETER VALUE

To establish the necessary background for our subsequent results, we first
review the relevant features of the simple linear inequality constraints tests.
This test takes the form: H: u >0 versus K: u € R? based on i ~N(u, ),
where £ is a known positive definite matrix. Perlman (1969) presents a general
framework for analyzing these types of testing problems. Following his logic, the
likelihood ratio (LR) statistic is defined as a minimum chi-squared-like distance
between 4 and the set in which w lies under the null hypothesis. In this case we
have

(21) LR =inf[(2 —m)'Q~'(4 —m) subject to m > 0].
m

This null hypothesis does not specify a unique w. To derive an exact size a
critical value for a linear inequality constraints hypothesis test, a least favorable
true value of u in the set defining the null hypothesis must be chosen. Lemma
8.2 of Perlman (1969) implies that for any ¢ > 0,

(2.2) sup pr[LR >c|u, 2] =pr[LR >¢|0, 2],

n=0

where pr[LR > c|u, 2] is the probability of the event [LR > c] given that { in
(2.1) is N(u, 02). Therefore, the least favorable value of w > 0 which determines
the exact size null distribution is u = 0. As stated in Perlman (1969), crucial to
the validity of Lemma 8.2 is the lack of functional dependence of {2 on u, so
that variation in u cannot affect the elements of (2. Unfortunately, with non-
linear models or constraints, the functional dependence of the asymptotic
covariance matrix of the constraints function estimator on the true vector of
parameters is intrinsic to the problem.

We now state a lemma which is the closest we can get to Perlman’s Lemma
8.2 for the general nonlinear inequality constraints testing framework. For
expositional ease, we derive this lemma for the maximum likelihood model,
although under suitable regularity conditions the result holds for more general
classes of nonlinear models. Let 8 € R* denote the parameter vector, ® C R*
a compact parameter space containing 6, and L(8) the log-likelihood func-
tion pased on n observations. Under the standard regularity conditions,?
n'/2(6 — 6,) > N(0, I(8,)~ ") for all 8, € interior(®), where 6 is the maximum
likelihood (ML) estimate of 6, and

1 92L(6)
n 9000’

1(6) = lim E,,
n-—oo

3 Here and for the remainder of the paper, the standard regularity conditions refer to those in
Amemiya (1985, Chapter 4).
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is Fisher’s information matrix. This matrix can be consistently estimated by
1 0°L(6)
V( ) =T r
n 96000

Assuming that 0o is the true 6, we can show V(6) converges in probability to
I(6,), so that V(6)! is a consistent estimate of the asymptotic covariance
matrix of n'/%(6 — 6,).

Consider the nonlinear inequality constraints (NIC) test

(23) H:h(0)>0 versus K:0€R*

for this maximum likelihood model framework.® In this case h(8) = (h(8),
hy6),...,h,(8)) is a p-dimensional nonlinear vector-valued function from R*
to R? (p<k). Let H(9) represent the (p X k) matrix of partial derivatives
(0h(0)/36;,i=1,...,pand j=1,..., k) of h(#) with respect to the elements of
8. From K&P and Wolak (1989), one of the three asymptotically equivalent
forms of the test statistic for (2.3) is:

W, = inf | n(R(B) — £)7(8) " (h() ~ 1) subject to ¢ > 0
t

where J(8) =[H(6)V(6)~'H(0)) and J(6,) =[H(8,)I(0,) 'H(6,)]. We now
state our result in the form of a three-part lemma proven in the Appendix.
First we define the necessary notation. Let C = {0]4(60) > 0}, C' = {6|h(6) > 0},
and C”=C ~ C". Partition C” into the sets: 4 ={0|6 € C” and h(6) =0 for
only one j € P}, where P={1,2,..., p} is the set of integers from 1 to p, and
B=C"%—A. For any 6, € C® let h,(8) denote a vector of elements of 4(8) such
that 4,(8,) =0 (j € P), and m <p denote the dimension of /,(6). Let H,(6,)
represent the matrix of first partial derivatives of 4,(6) with respect to 6.

Lemma 1: For testing problem (2.3) we have the following three resullts.
(1) Forall 6, C',

(2.4) lim pr[W,=0/6,] =1.
(2) For any ¢ >0 and 6, € C® such that H,(0,) is of full row rank:
(2.5) 11m pr(W,>clb,] = Z pr[X] >c]w(m m—j,J,(0,))
j=0

where J,(0,) = [ H,(0,)1(0,) " 'H,(0,)] and the w(m, m — j, J,(8,)) are the weights
functions defined in Kudo (1963).

(3) For all 6, B, 6§ €A and fixed ¢ > 0,
(2.6) 11m pr[W,>cl8,] > lim pr[W,>clof].

n

4 All NOS hypothesis tests considered in this paper are under the maintained hypothesis that 6
lies in @.
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This lemma contains several results. Part (1) states that all elements in C?, the
interior of the constraint set, can be removed from consideration as a least
favorable value, because W, converges in probability to zero for these values of
6,. Part (2) provides a general characterization of the asymptotic distribution of
W, for all values of 6, C®. In particular, it shows the impact, on the
asymptotic distribution of W,, of any one of the inequality restrictions not
holding as an equality at 6,. Finally, part (3) eliminates certain elements of C®
from consideration as potential least favorable values of 0,. Taken together,
these three results require the least favorable value of 6, to be an element of
the set B. Although this lemma specifies that B € C must contain the least
favorable value of 6, under the null hypothesis, in general, it does not yield the
solution in 6, to

(2.7) sup lim pr[W, >cl6,],

fpeC N 7*®

for a given ¢ > 0, which is the optimization problem that must be solved to
compute the least favorable 6, € C for the critical value c.

We now describe an algorithm for solving (2.7) for an arbitrary nonlinear
model inequality constraints test. Unfortunately, because of the computational
difficulties to be described, this procedure is, in most cases, useful only to
demonstrate that the least favorable value exists, not to actually find it. Let
¢ > 0 denote an arbitrary critical value. For a fixed value of 50 € B, the first step
in the process is determining which elements of 4(6) comprise the vector 4,(0)
described in part (2) of Lemma 1. Once the vector-valued function 4,(0) is
specified for 670, the large-sample probability lim, _,, pr[W, >c|(70] can be
computed from equation (2.5). This process must be repeated for all 0, € B.
The value of 6, € B which maximizes this large sample probability is the least
favorable value of 6, determining the asymptotically exact size of the test for
the critical value c¢. Because of the functional dependence of this least favorable
value of 6, on ¢, we write it as 6%(c). The critical value for an asymptotically
exact size @ NIC test is the ¢ that solves lim, _,,, pr[W, > c|0§(c)] = a.

Actually implementing this algorithm deserves some comment. Although the
w(p,j,3)(j=0,..., p) are only available in closed form for p < 4, Kudo (1963)
gives expressions for these weights for arbitrary p as sums of products of
multivariate normal probabilities determined from submatrices of 3. Conse-
quently, for each value of J,(6,), the distribution given in (2.5) can be com-
puted. However, the problem of determining J,(8,) for each 6, still remains. As
defined in part (2) of Lemma 1, J,(6,) is a function of the information matrix,
which does not have an analytical form for many nonlinear models. Conse-
quently, for these models the nonexistence of an analytical expression for the
matrix I(6) precludes computing the asymptotically exact critical value.

Nevertheless, there are two situations where the unique least favorable value
of 0, exists for the NIC test. If the matrix 1(0,) is diagonal for all 0, € B and
the inequality constraints take the form of simple bounds, the least favorable
value is the unique 6, which satisfies all of the inequalities with equality. For
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the case of a 1-dimensional nonlinear inequality constraint test, all of the values
of 6, which satisfy the inequality constraint with equality yield the same
asymptotic distribution. This result is a large-sample nonlinear analogue of a
one-sided ¢ test.

We now present a two-dimensional example, which conveys the intuition
underlying this multiplicity of null asymptotic distributions for NIC hypothesis
tests. Consider the testing problem

(28) H:h(6)>0 versus K:0€R?
based on Z=0+v, v ~N(0,1),

where I is a (2 X 2) identity matrix. Define the elements of 4(#) € R? as follows:
h(8)=0,— 07 and h(0)=0,— 0, for 6 =(6,,0,). The matrix of first-partial
derivatives of h(8) takes the form:

—26 1
29)  H(9)= ! ]
CONTOR] I
for all @ € R%. Given n observations on Z, the ML estimate of 6, is 6=
(1/m)Z_, Z;, which is N(8,,(1/n)I). Therefore n'/%(f - 6,) ~N(0,1) and
n'/2(h(6) — h(6,)) is, by the delta-method, asymptotically N(0, J(6,)), where
J(6,) = H(6,)H(0,). The test statistic for (2.8) is

(210) W, = i?f[n(h(é) —1YJ(6) "' (h(6) — ) subject to £ > 0],

where J(6) = H(§)H()'. By an application of Lemma 1 and because 4(6) € R?,
the least favorable value of 8, under the null hypothesis must be a member of
the set T ={0|h(8) = 0}. For this simple problem there are two 8, € T: 3° =
0,0y and 6)'=(1,1). The two sets of inequalities H(6°)0 > (0,0) and
H(811)8 > (—1,0) are linearized versions of the inequality constraints 4(8) > 0
at these two points. Each set of linear inequality constraints defines a cone of
tangents to C ={60|h(6) > 0,6 € R?} at the value of 6 satisfying all of the linear
mequahtles with equality. Because ] converges in probability to 6,, we know
that J(8) converges in probability to J(6,) for all 6, in the parameter space, so
that we have:

J(eg°)=[_} ';] and J(B})l)=[_§ —g]

Because the asymptotic distribution of (2.10) depends on 6, through J(6,), each
value of 6, implies a different null asymptotic distribution. From Wolak (1989),
the asymptotic distribution of W, given 6, € T, is

2
(2.11)  lim pr[W,>c]= Y pr(XJ2>c)w(2,2—j,J(00)).
n—o j=0
This asymptotic distribution is functionally dependent on 6, via J(6,) through

the weights, w(2,2 —j, J(8,)). The weights for J(63°) and J(83') can be calcu-
lated from the closed form expressions given in Wolak (1987). These weights
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Ficure 1.—Graphical representation of canonical linear inequality constraint sets for hypothesis
test (2.8).

yield two potential null asymptotic distributions which result in two different
critical values for the test.

Reducing each local linear inequality constraints test in terms of 6 to its
canonical form most clearly illustrates the effect of varying 6, on the resulting
null asymptotic distribution. As discussed in GHM (1982) and Wolak (1988), for
any linear inequality constraint framework RB > r with R of full row rank and
test statistic based on B =8 +¢, ¢ ~N(0, 3), there exists an invertible affine
transformation to the framework Am > 0 (A is lower triangular with 1’s along
the diagonal) and test statistic based on # =7+ 7, n ~N(0, I). We call this
inequality constraint framework in terms of 7 the canonical linear inequality
constraints set. This form has the attractive feature of defining all test statistics
in terms of Euclidian distances, because the covariance matrix of 7 is the
identity matrix. It also defines all inequality constraints so that they describe
polyhedral cones. For our two-dimensional problem, once we specify the (2, 1)
element of 4 (a in the notation of Wolak (1988)), the entire canonical linear
inequality constraints framework is specified. Applying the invertible affine
transformation given in Wolak (1988) to the test at 63° implies a® = 1.0, and
applying it to 8} yields a'! = 0.6. The constraints sets in (7, m,)-space corre-
sponding to these two values of 6, are given in Figure 1. The constraint set
corresponding to }' contains that corresponding to 63°, so that 83 is the least
favorable null value of 6,,.

The dependence of the null asymptotic distribution of NIC tests on the local
geometry of the constraint set relative to 6, is not unique to this form of A(6).
For the case of 8§ € R* and A(8) a nonlinear vector-valued function from R* to
R?, where p <k, there may be an uncountable number of # € R* such that
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h(8) = 0, and an uncountable number of potential null asymptotic distributions.
By Lemma 1, for inequality constraints tests with p > 2 the set of possible least
favorable values expands beyond T to B. Nevertheless, the intuition provided
by this example continues to hold; that is, the 8, B with the local linear
inequality constraints test having the largest size a canonical linear inequality
constraints critical value is the least favorable value of 6, under the nonlinear
model inequality constraints null hypothesis.

To explore the implications of Lemma 1 further, we present a simple
inequality constraints test where the set of least favorable parameter values
expands beyond T to B, and the least favorable parameter value does not
satisfy all of the inequalities with equality. In the process, we describe the
features of the NIC hypothesis test necessary for this result to occur.

Consider the ML model for the case of independent identically distributed
observations from the bivariate normal distribution

2
X ~N (0), log poT .
0/ \por <2
For this model, we have 6 = (02,7%,p) and @ ={016,>0,0,>0,— 1< 6, < 1}.
The ML estimate of 6, 6, is given in Lehmann (1983, pp. 439-440). Under the
standard regularity conditions, n'/%(§ —0,) converges in distribution to a

N(0, I(8,) ") random vector, where 1(8,)~' takes the form given in Lehmann
(1983, p. 441). The correlation matrix of 7(#)~! is equal to:

1 p: p/V2
(212) c(1(®) ) =| p? 1 p/V2 |
p/V2 p/V2 1

This correlation matrix is the minimum information necessary to compute the
null asymptotic distribution for any NIC hypothesis test involving 8 because the
w(p,j,2) depend on I only through its correlation matrix.

Within the context of this three-parameter model consider the hypothesis test

(213) H:0<6” versus K:0€OCR?,

where 6" =(1.0,1.0,0.95). One of the three asymptotically equivalent forms of
the test statistic for this hypothesis test is:

W, = inf[n(6 —t)'1(8)(8 — ) subject to t < 6"].
t

For §,=6" and any c¢ > 0, the exact limiting distribution of W, is given by the
following weighted sum of y2-distributions:

(2.14)  lim pr[W, >c]=0.015263pr [ x2 > c|
n— oo

+0.168204 pr [ x2 > c| +0.484737pr [x? > c].

The weights in (2.14) were calculated using the correlation matrix given in (2.12)
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evaluated at 8 = " and the formulae given in the Appendix of Wolak (1987). In
the Appendix we show that the asymptotic distribution of W, for §,=60% =
(1.0,1.0,0.0) is

(2.15)  lim pr[W,>c]=gpr[xi>c] +3pr[xi=c].
n—o

We can also show that 6,= 68 vyields the least favorable null asymptotic
distribution for this hypothesis test. Figure 2 contains plots of I'(c|6) =
lim, ,, pr{W, >c|6] for 6 and 65. The plot labeled 6" in the figure corre-
sponds to I'(c|#”) and the plot labeled 82 corresponds to I'(c|6%). For all
values of ¢ in the diagram, I'(c|02) > I'(c|8"), despite the fact that 6" is the
value of 6 which satisfies all of the inequality constraints with equality. In this
case, because of the form of the functional dependence of the asymptotic
covariance matrix of n'/%( — 6,) on 6,, the least favorable value of 8, € C only
satisfies two of the three inequalities with equality.

This result is particularly relevant to the NIC framework derived by K&P.
These authors treat the case in which J(6) does not depend on 6, and
consequently the least favorable value of 8, lies in T. However, as Lemma 1
and this example show, the least favorable value of 6, need not lie in T when
J(8) depends on @ as is often the case in nonlinear models.

We now discuss an alternative procedure for computing critical values for
these tests which can run into difficulties for the reasons given in the above
example. This procedure involves computing the weights, w(p, j, J(6,)), using a
consistent estimate of J(6,) evaluated at 6, the unrestricted estimate of 6,. For
the ML model and hypothesis test of Lemma 1, the weights are computed using
J(8) as described earlier, instead of J(6,). By this logic, the critical value ca(é)
solves the following equation in c:

(216) a= Y pr[xf>c]w(p,p—j,f(§))
i=0

where 8 is the MLE of 6. We can show that so long as the least favorable value
of 6, is in T, this procedure will yield an asymptotically exact size « critical
value. However, if the least favorable value of 6, does not satisfy all the
inequalities with equality, as in hypothesis test (2.13), this critical value will not
lead to an asymptotically exact size test. In these instances, because of the
asymptotic dimension reduction in the nonlinear inequality constraints test for
each h;i(6,) >0, the quantity ¢ (0) defined in (2.16) does not converge in
probablllty to the asymptotically exact size critical value c”(()*) where 6§ is the
least favorable value of 6, € B. When 6, = 6 (the true parameter value equals
the least favorable parameter value), the critical value c2(6%) is asymptotically
equivalent to the solution in ¢ to

(217) a=Y pr[xf?c]w(m,m—j,f},(é)),
i=0

where J,(0) = H,(6)V(6) "'H,(6). Even under the usual assumption for comput-
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FiGURE 2.—Probability of rejecting null hypothesis for test (2.13) as a function of critical value.
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ing critical values® that 0, = 6%, if the least favorable value does not satisfy all of
the inequalities with equality, solving equation (2.16) will not yield an asymptoti-
cally exact critical value. This procedure does not take into account the
dimension reduction in the constraints set (i.e., m < p) caused by some of the
inequalities not holding with equality at 6. In these cases, solving (2.16) instead
of (2.17) can yield too small or large of an asymptotic critical value, so that
lim,, _, . pr[W, > c(0)|0§] +# a.

Kodde and Palm (1986) suggest solving (2.16) to compute critical values for
NOS tests. Their procedure yields an asymptotically exact test for all NOS tests
where 65 € T. However, as the above discussion demonstrates, for higher
dimension (p > 2) NIC tests with 63 € B, solving (2.16) for ¢ (0) to compute
critical values can lead to incorrect asymptotic size tests.

3. SLACKNESS OF BOUNDS ON NULL DISTRIBUTION

This section discusses the slackness of the bounds on the exact null asymp-
totic distribution of the NOS test statistics. Using the canonical linear inequality
constraints form of an NOS test, we can derive bounds on the null asymptotic
distribution of these test procedures. Consider a multivariate inequality con-
straints test (2.3) for 6 € R* and h(8) € R? (p <k). As described earlier, we
can reduce any large-sample local linear inequality constraint test at 6, to its
canonical form in terms of 7 and 4w > 0 as shown in Figure 1. Each 6, B
implies a polyhedral cone defining the large-sample canonical linear inequality
constraints null hypothesis in w-space. For any polyhedral cone defined by
A > 0 there is a half-space in R? containing it and a half-line in R? contained
in it. In terms of our notation, for any C“ ={x|4x > 0, x € R¥}, there exists a
half-space, M > C and half-line, L < C“. (See Figure 1 for the case of p =2.)
Define

WM=¢iIeljfw(ﬁ—¢)'(ﬁ—¢) and WL=¢i1€1fL(ﬁ—¢)'(ﬁ—d>)~

Clearly, W,, < W < W,, where W is the large-sample value of W,. Consequently,
we have:

(3.1) inf pr[D >cly,J(8)] = pr[Wy>clr=0] =3pr[x?>cl;
E .

(3.2) sup pr[D >cl6,,J(6,)] <pr[W,>clm=0]
0,€S

=3pr[xg_ >c] +3prx;>c,

where S=B for the NIC test, S=T for the test H: h(6)=0 versus K:
h(0) >0, and D is the large-sample value of the respective NOS test statistic.

An alternative way to get the right-hand side of (3.1) is to take the infimum
with respect to all positive definite £2 of the rejection probability given in (2.2)

3 Lehmann (1986, pp. 68-69) discusses this approach to computing critical values for hypothesis
tests having a general composite null hypothesis.
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holding w = 0. The supremum of (2.2) over this same set of 2 holding u =0
yields to the right side of (3.2). For this linear model linear inequality constraint
framework, because (2, the covariance matrix of w, is allowed to vary indepen-
dently of u, the infimum and supremum of the probability in (2.2) can be taken
with respect to all positive definite matrices while maintaining u = 0. Conse-
quently, for this case, Perlman (1969) shows that the right-hand side of (3.1) and
(3.2) rare tight bounds on the null distribution. However, for the case of
nonlinear models and/or constraints, the asymptotic covariance matrix of the
constraints vector J(6,) can only be altered by changing 8,. Consequently, by
varying 6, over S, the entire set of positive definite matrices cannot be traced
out by J(8,). This implies that the distributions given in (3.1) and (3.2) are slack
for most NOS tests. Both of the examples in Section 2 illustrate this point.

Exactly how slack these bounds are depends on the number of inequality
constraints under examination, as well as the specific model and constraints set.
Because (3.1) is independent of p, the dimension of A(8), by inspection of (3.2),
as p grows the difference between the upper and lower bounds on the
asymptotic distribution will increase. Unfortunately, there is no simple set of
conditions on the model or constraint set which will allow a characterization of
the instances where the actual asymptotic distribution is closer to the upper
bound than the lower bound or vice versa.

The results given (3.1) and (3.2) have implications for the distributional
bounds given in K&P. For NOS tests when J(6) depends on 6, the upper and
lowers bounds on the null asymptotic distribution given in equations (3.1) of
K &P are no longer tight. Nevertheless, as demonstrated above, the upper and
lower critical values computed in Table I of their paper still yield valid slack
upper and lower bounds on the asymptotically exact critical value for any NOS
hypothesis tests when J(6) depends on 6. Consequently, these critical values can
still be used to draw asymptotically valid inferences, but the increasing distance
between the upper and lower critical values as p grows will make drawing
definitive inferences increasingly unlikely.

These results also impact on the nonlinear model linear multivariate one-sided
test considered by GHM (1980): H: 8, = 67 versus K: 0, > 8%, where 0, and 07
are subvectors of 8 and 6* (a known vector). Even though this test has a point
null hypothesis, the problem of multiple null asymptotic distributions still arises
if the asymptotic covariance matrix of the constraints vector depends on 6,, the
elements of 6 excluded from the test. The bounds on the null asymptotic
distribution given in (3.1) and (3.2) are also slack for this testing framework
because, in general, the set of all positive definite matrices cannot be traced out
by the asymptotic covariance matrix of n'/%(, — 8¥) by varying 6, over its
parameter set.

4. CONCLUSIONS AND IMPLICATIONS FOR NOS TESTS

All of the problems associated with testing problems involving nonlinear
inequality constraints arise from the dependence of the asymptotic distribution
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on the geometry of the inequality constraints local to the assumed true 6,. A
framework which explicitly recognizes these limitations of nonlinear inequality
constraint tests in nonlinear models should not fall prey to these complications.
Wolak (1989) presents a general local hypothesis testing framework for the case
that either the null or alternative hypothesis is specified by a system of
nonlinear inequality constraints or combinations of nonlinear inequality and
equality constraints. That paper derives asymptotically exact local results for
these hypothesis tests. Emphasis is placed on deriving the precise geometry of
the set specified by the inequality constraints and consistently estimating the
exact null asymptotic distribution implied by this set.

The results presented here are not meant to discourage the empirical imple-
mentation of these kinds of NOS procedures, only to encourage their proper
‘use and the correct interpretation of the results. Several recommendations
along these lines are possible. The major result of this paper is the difficulty in
obtaining an empirically implementable asymptotically exact hypothesis test.
This conclusion implies that in most instances an asymptotic bounds test is
necessary. The results of Section 3 enter here. They illustrate that, in general,
only slack upper and lower bounds on the asymptotic distribution of these test
statistics exist. For tests involving higher dimensional inequality constraints,
these bounds become very slack, making inconclusive test results more proba-
ble. However, economic theory or some other form of a priori information often
yields a specific point on the boundary of C relative to which the nonlinear
inequality constraints test can be performed. In these cases, the researcher
should then perform the inequality constraint test local to this point. Proceeding
as described in Wolak (1989), an asymptotically exact distribution for the test
statistic is available so that a definitive conclusion concerning the hypothesis test
can be reached.

Department of Economics, Stanford University, Stanford, CA 94305, U.S.A.

Manuscript received March, 1987; final revision received August, 1990.

APPENDIX

Proor oF LEmMMa 1: First we show that for any set of nonlinear inequality constraints and any
0,€ C, as n — =, the number of inequality constraints used to compute W, is reduced by the
number of 4,(8) such that 4,(8,) > 0 for j € P. Given this result, we then derive parts (1), (2), and
(3) of Lemma 1. .

Define /,(8,) =n'/?(h(8) — h(8,)) for any 6, € C. Under our regularity conditions, /,(6,) con-
verges in distribution to a N(0, J(6,)) random vector for all 8, € interior(®). For a given value of
6, € B, we can rewrite the optimization problem determining W, as

(A1) W= inf[(1,00) 1) F(B) " (1,(80) — 1) subiect to 1 =x = n'Zh(8), x> 0]
t
Substituting ¢ +n'/2h(8,) for x in (A.1) yields:

(A2) W= inf[(1,80) = )F(B) ' (1,(80) - 1) subiect to 1> —n'/2h(8,)] .
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Suppose 6, € B — T. As defined in part (2), #,(9) € R™ is the subvector of the inequality constraints
satisfied with equality, so that k,(6,) = 0. Let 4,(6) € RP~™ denote the subset of /() satisfied with
strict inequality, so that h(6,) > 0. Partitioning ¢ conformably to h(6), we have ¢ = (1}, t]). Using
this notation, we can rewrite (A.2) to obtain:

(A3 W,=inf [((80) = 1)7(8) ™" (1,000) 1) subiect 10 1,>0,1, > —n1/%h J(0)]-
Taking the limit of (A.3) as n — « we obtain:
(Ad4)  W=inf[(z-1)7(8,)'(z 1) subject to 1,>0,t, e R?~"],

t

where the exact distribution of z is N(0, J(6,)). Consequently, for the elements of h(6,) that are
strictly greater than zero, in the limit, the corresponding elements of ¢ are unconstrained in the
optimization problem determining W, the limiting value of W,.

To establish part (1) of the lemma note that if 6 is such that h(8,) = h(6), all of the inequality
constraints are slack, then (A.4) reduces to:

(AS)  W=inf[(z-1)J(6,) (2~ 1) subject to t €R?].

Because ¢ is unrestricted, we have W =0, so that lim,, _, ,, pr[W, = 0] = 1. Rothenberg (1973, p. 50)
establishes a related result which shows that the asymptotic distribution of the inequality restricted
estimator is the same as that for the unrestricted estimator when the true parameter value lies in the
interior of the constraints set.

To establish part (2) we apply the standard results for linear inequality constraint tests to (A.4).
The results from Wolak (1987) imply that the asymptotic distribution of W, for this 6, is:

(A.6) llm pr(W,=c]l=pr[W=c]= Z pr[ c]w(m,m—j,lb(eo)),
j=0

where J,(6,) is defined in the statement of part (2). We require the condition that H,(6,) is full row
rank to guarantee that J,(6,) is positive definite. This condition is required to compute weights
entering the null asymptotic distribution using the functions given in Kudo (1963). By the continuity
of H(6), values of 6, where H,(6,) is less than full row rank can be eliminated from consideration
as the least favorable parameter value.

To establish part (3) we note that for values of 6, € C such that 4,(6,) = 0 for only a single j € P,
by the logic of (A.1)-(A.4) we know that the distribution of W, asymptotically reduces to the
distribution associated with a univariate inequality constraints test. ThlS distribution is 3 Lpr[ ,\/1 >c]
for ¢ > 0. From equation (3.1) we can see that this distribution is also the lower bound on the exact
null asymptotic distribution of a NIC test of arbitrary dimension, which establishes part (3).

Proor ofF Eouation (2.15): Specializing h(8) to the case of test (2.13) we obtain A(9) =
6" —6. 1For the case that p <0.95, the correlation matrix of V,(6,) is the (2 X 2) submatrix of
(K@)

1 p?
o 7]

Let VB denote (A.7) evaluated at the point 67, Using the closed form solutions for the weights in
Wolak (1987) gives w(2,2,VE) =1, w(2,1,V8) =1, and w(2,0,V?) = }. Applying (A.6) with these
weights gives (2.15), because pr| ,\/3 >c]=0forc>0.
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